Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110
نویسندگان
چکیده
BACKGROUND Erythrose reductase (ER) catalyzes the final step of erythritol production, which is reducing erythrose to erythritol using NAD(P)H as a cofactor. ER has gained interest because of its importance in the production of erythritol, which has extremely low digestibility and approved safety for diabetics. Although ERs were purified and characterized from microbial sources, the entire primary structure and the corresponding DNA for ER still remain unknown in most of erythritol-producing yeasts. Candida magnoliae JH110 isolated from honeycombs produces a significant amount of erythritol, suggesting the presence of erythrose metabolizing enzymes. Here we provide the genetic sequence and functional characteristics of a novel NADPH-dependent ER from C. magnoliae JH110. RESULTS The gene encoding a novel ER was isolated from an osmophilic yeast C. magnoliae JH110. The ER gene composed of 849 nucleotides encodes a polypeptide with a calculated molecular mass of 31.4 kDa. The deduced amino acid sequence of ER showed a high degree of similarity to other members of the aldo-keto reductase superfamily including three ER isozymes from Trichosporonoides megachiliensis SNG-42. The intact coding region of ER from C. magnoliae JH110 was cloned, functionally expressed in Escherichia coli using a combined approach of gene fusion and molecular chaperone co-expression, and subsequently purified to homogeneity. The enzyme displayed a temperature and pH optimum at 42 degrees C and 5.5, respectively. Among various aldoses, the C. magnoliae JH110 ER showed high specific activity for reduction of erythrose to the corresponding alcohol, erythritol. To explore the molecular basis of the catalysis of erythrose reduction with NADPH, homology structural modeling was performed. The result suggested that NADPH binding partners are completely conserved in the C. magnoliae JH110 ER. Furthermore, NADPH interacts with the side chains Lys252, Thr255, and Arg258, which could account for the enzyme's absolute requirement of NADPH over NADH. CONCLUSIONS A novel ER enzyme and its corresponding gene were isolated from C. magnoliae JH110. The C. magnoliae JH110 ER with high activity and catalytic efficiency would be very useful for in vitro erythritol production and could be applied for the production of erythritol in other microorganisms, which do not produce erythritol.
منابع مشابه
Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae.
The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG- 3')...
متن کاملCharacterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis
BACKGROUND Erythritol is a natural sweetener that is used in the food industry. It is produced as an osmoprotectant by bacteria and yeast. Due to its chemical properties, it does not change the insulin level in the blood, and therefore it can be safely used by diabetics. Previously, it has been shown that erythrose reductase (ER), which catalyzes the final step, plays a crucial role in erythrit...
متن کاملFirst case of bloodstream infection due to Candida magnoliae in a Chinese oncological patient.
We report a case of fungemia caused by Candida magnoliae, a yeast never associated with human disease. The infection occurred in a 42-year-old Chinese patient with gastric cancer complicated by peritoneal carcinosis. Multiple blood cultures were positive for yeast; the species was well identified with biochemical and molecular methods. The phylogenetic analysis showed a close relationship of C....
متن کاملBiochemical Characterization of A Novel Thermophilic Esterase Isolated from Shewanella sp F88
The main objective of this study was to purify and characterize an esterase from Shewanella sp F88. The enzyme was purified 41-fold and an overall yield of 21 %, using a two-step procedure, including ammonium sulfate precipitation and Q-sepharore chromatography. Molecular weight of the enzyme was 62.3 kDa according to SDS-PAGE data. The enzyme showed an optimum activity at pH 6.5 and 58 ˚C. Evo...
متن کاملMolecular Cloning, Expression and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania
Background: Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pterid...
متن کامل